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Geometrical properties of elements of the unique representation of the 
Clifford algebra of quadratic form ( + ,  , , - )  are investigated. A 
connection between horospheres on the positive Lobatschevsky space 
of timelike directions and spinors is established. 

1. INTRODUCTION 

The main purpose of this paper is to investigate a geometrical interpreta- 
tion of spinors in special relativity where spinors are defined as some elements 
of  the Clifford algebra generated by vectors of Minkowski space [the vector 
space equipped with quadratic form of  signature ( + ,  , , )]. We begin 
with an investigation of  the connection between spinors and Minkowski 
space, and give a construction of an isomorphism x of  the Hermitian part 
of  the tensor product of  the so-called odd and even half-spinors into 
Minkowski space. We have to restrict the symmetry group of  the spinor 
space to the so-called Spin+ =~ SL(2, C) group in order to assure the 
existence of  invariant skew bilinear forms on the spaces of two-spinors. 
We obtain known (Penrose, 1968; Trautman, 1965) results concerning 
relations of  vectors to Hermitean matrices and so on, except in the case 
when the two-spinor space N is not an abstract two-dimensional complex 
vector space with a skew bilinear form, but is generated by vectors of 
Minkowski space by the Clifford product. We obtain in a simple manner the 
well-known Penrose world flag and show that this flag is invariant with 
respect to the Crumeyrolle group ~ ,  which is the group that determines 
the existence of  a spinor structure on a space-time manifold E. Finally, we 
establish a connection between horospheres on the positive Lobatschevsky 
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space of timelike directions (that is, orbits of the group ~ )  taken with 
parametrizations on them, and spinors of the space Z. This connection is 
interesting with respect to a physical interpretation of the reduction of the 
Lorentz principal bundle of orthonormal frames to the Crumeyrolle group. 

2. SPINORS A N D  MINKOWSKI SPACE 

Given a quadratic form Q on an even-dimensional vector space M, 
by the spinor space we understand the vector space of the unique, up to 
equivalence, irreducible representation of the Clifford algebra C(Q) of the 
quadratic form Q. In the case of Minkowski space, the form Q is given by 
diag (+ ,  , , - ) .  Let (e0, el, e2, e3) be the orthonormal base of E. Then 
the Clifford algebra C has (Bourbaki, 1959) the underlying vector space 
isomorphic to the vector space of the exterior algebra /~ E of E, which 
means that C is spanned by the products %.  �9 �9 %, with 0 ~< il, i2 , . . . ,  ik ~< 3, 
and by unit. Thus the space E will be considered as a subspace of C. The 
multiplication law in C will he completely defined by the quadratic form in 
such a way that for any x, y ~ E, 

xy  = x A y + �89 y)  (2.1) 

with B(x,  y ) =  Q(x + y ) -  Q ( x ) -  Q ( y ) =  2x . y .  " . "  denotes the scalar 
product, " A "  denotes the exterior product. Hence we have 

x 2 = Q(x).  1 (2.2) 

We see that the exterior algebra A E may be identified with the Clifford 
algebra of the zero form on E. 

To obtain the spinor space S we should pass to the complexifications 
Ec, Q', C'  of E, Q, C, respectively. Now every orthogonal frame e = 
(eo, ez, e2, ea) gives rise to the Witt base oJ = (xl, x2, yt, y2), where 

xl = �89 + e3) Yl = �89 - ea) 
x2 = �89 + e2) Y2 = �89 - e2) (2.3) 

We see that x~ and x2 span the totally singular subspace N as well as y~ 
and yz span the totally singular subspace P of Ec, which are mutually 
supplementary and 

B'(x~, xj) = B'(y~, yj) = 0 
i f (x , ,  y,) = 8,j (2.4) 

(here B' is the extension of the bilinear form B to Ec). Let us s e t f  = YlY2. 
Now C ' f  will be the minimal left ideal of C', and the Clifford algebra C' 
is isomorphic to the algebra of endomorphisms of the vector space C f  
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spanned by (YlY2, x l y l y2 ,  x2yly2,  xlx2yzy2).  Therefore we shall identify 
C~f with the spinor space S of the quadratic form Q(1, 3). I f  we denote by 
C N and C p the subalgebras of  C '  generated by N and P, respectively 
(C N =~ AN, C P ~ AP), then we have C ' f ~  CNf  The representation p' 
of  C '  on C N is given by 

(p'(v) o u ) f ~  f v u f %  f p(v) o u f  
(2.5) 

for every v e C' ,  u e C N. Hence we may take the space S of spinors to be 
S = C~ r = C N, and p (as well as p') as the spin representation. As a base 
of this spinor space we can take 

5P = (Y~Y2, x~y~y2, x2y~y2, x~x2yly2) =- (1, xl ,  x2, x~x2) (2.6) 

We can distinguish two subspaces of  S: So spanned by xl and x2, 
and S~ spanned by 1 and xlx2, which will be called the spaces of  odd and 
even half-spinors, respectively. 

The spinor representation O (o') of  C' gives rise to spinor representations 
of  some groups contained in the Clifford algebra C'. Namely, some elements 
s of C '  form a multiplication group ofinvertible elements of  C' with property 
sxs - ~ ~ E for any x ~ E, called the Clifford group G. From (2.2) we have 
Q(sxs-~) .  1 = ( s x s - O  2 = Q(x).  1, so we obtain the map ~v: G--+ O(1, 3). 
The group G has subgroups Pin, Spin, and Spin+, which are the covering 
groups of ~ = O(1, 3), SO( l ,  3), and SO+(1, 3) = ~0, respectively. It ap- 
pears, however, that the spinor representation p (p') of  Spin+ ~ SL(2, C) 
is a sum of two inequivalent, irreducible representations on the half-spinor 
spaces So and S~. 

Now for future use we introduce the notion of the main antiauto- 
morphism a of  C'. It  can be defined by a listing of its properties: 

a 2 = I  
~(u.v) = ~(v)~(u) 

~ ( x )  = x 

a(a.1) = a.1 
~ ( x y )  = y x  = ~ ( x ,  y ) .  1 - x y  

So f o r f e  C '  we have 

a ( f )  = - f  

for every u, v ~ C '  
for every x e E 
for every a ~ C 
for every x, y ~ E 

(2.7) 

Now we have a possibility of  introducing a bilinear form ~ on the 
spinor space S as given by 

a(u f )v f  = ~(u, v ) f  for every u, v e C N (2.9) 

or equivalently, 
a(u)v = ~(u, v)xlx2 (2.10) 

(2.8) 
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It is easy to see (Chevalley, 1954; Crumeyrolle, 1969) that the form is non- 
degenerate and skew symmetric. Besides, it is the zero form on So x Se 
and S~ x So, and 

/3(O'(s)u, O'(s)v) =/3(u,  v) for s e Spin+, u, v ~ C z~ (2.11) 

In this manner we reach two two-dimensional vector spaces So and Se with 
the Spin+ as a symmetry group, equipped with bilinear skew form t3 invariant 
with respect to the group Spin. .  

Let us consider now the space S | S, i.e., the tensor product of the 
spinor space S with itself. It is the space of representation p' | p' of Spin+, 
defined by 

p' | p ' (s)(u | v) = O'(s)u | p ' (s)v  (2.12) 

The mapping ~b from S | S into the Clifford algebra C' given by 

~(u | v) = uf~(v) for every u, v ~ S ~= C N (2.13) 

appears to be a linear isomorphism, for we show that ~b(S | S) is a two-sided 
ideal different from 0 of the simple algebra C', and hence it is isomorphic 
to C'. For every w e C'  we have 

wufe~(v) = (O'(w)u)fc~(v) ~ ~b(S | S )  (2.14) 
and 

ufe~(v)w = uc@~(w)vc~(f)) = -uc@~(w)v f )  = uf~(p'(e~(w))v) ~ ~b(S | S )  
(2.15) 

Moreover, for s e Spin,  we have 

~b(p'(s)u | p '(s)v)  = sufc~(p'(s)v) = - sue~(p'(s)vf) 
= sufe~(v)e~(s)ss - 1 = sufc~(v)s -1 (2.16) 

because for every s e Spin+ its norm given by 

N ( s )  ~ c~(s)s (2.17) 
is equal to 1. 

Now we shall find the relation between the tensor product of half- 
spinors and Minkowski space E. As it has been said earlier, we identify 
E with a subspace of the Clifford algebra C. So from (2.16) we have that if 
we transform spinor space by some element s e Spin+, then Minkowski 
space E ~ C is transformed by some element belonging to SO+(1, 3) = No. 
From (2.3) we obtain 

eo = x l  + y l  ez = x 2 - y 2  

1 (xz + Y2) ea = x l  - Yl (2.18) 

(eo ~ = 1 = - e l  2 = - e 2  2 = - e a  2) 

Let us denote the base elements of So and Se by (p, ~) and (p*, or*), respec- 
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tively. So we have 
So = {xl, x2} = {p, ~} (2.19) 

with the form/3 
fl(p, or) = 1 = -fi(cr, p) (2.20) 

and 
Se = {1, xlx2} = {-~* ,  p*) (2.21) 

with 
/3(p*, ~*) = -fi(~*, p*) = 1 (2.22) 

We introduce an isomorphism X between So | So and Eo given by 

X = (1 + a) o ~b (2.23) 
that is, 

X(u | v) = ~b(u | v) - ~b(v | u) (2.24) 

which preserves the transformation property (2.16): 

X(p'(s)u | p'(s)v) = sx(u | v)s-1 (2.25) 

for every s ~ Spin+. It can be verified that 

X(P |  = Xl 
x(~|  = x2 
x(~|  = Y l  
X(O| ~*) = -Y2 

| + x(P|  = I 

S, we can calculate that 

and 
X(p* 

Now for any u, e So and v~ e 

(2.26) 

(2.27) 

X(Ul | vl)x(u2 | v2) = fl(ul, u2)~b(vl | v2) + fl(vl, v2)~(ul | u2) (2.28) 

where on the left-hand side we have the Clifford product of two vectors: 
X(ul | vl) and X(U2 | v2). 

Since from (2.1) we have the scalar product of two vectors 

x . y  = �89 y)  = -}(xy + yx)  (2.29) 

we have, taking into account (2.13), (2.9), and (2.28), 

B'(x(ul | vl), x(u2 | v~)) =/3(u~, u2)/3(vl, v2) (2.30) 

for u~ e So, v~ e Se. Thus every vector obtained from u | v by x is a null 
one, although in the general case it is a complex one. 

I f  we omit the symbol x denoting the isomorphism of So | Se into 
Ee, we can write (2.18) and (2.26) in the known form (Penrose, 1968; 
Trautman, 1965): 

go = p @ p* q- cr @ or* 

1 (~ | p,  
el = 7 - o | or*) 

(2.31) 
e2 = u |  + p |  
ea = p |  ~ |  



100 Bugajska 

In this manner every vector of the Minkowski space E can be described by 
the matrix with components: 

(p @ p* p @ a*) 
o. | p* o. | or* (2.32) 

or equivalently, by (2.26) and (2.3), 

(xl  -Y2)  1 (Co + ea e 2 - i e l ]  (2.33) 
x2 Yl =-2 e2 + iel eo ea! 

So any vector x e E can be represented by the matrix 

x = xio.i = x~ + x .a  (2.34) 
where from (2.33) 

eo = (10 01) a 1 =  (~ - ~ )  o'2= (01 ~) a a =  (10 ~) (2.35) 

It has been mentioned already that the group Spin+ acts in different 
ways on the spaces So and Se. Namely, it is easy to see that the Lie algebra 
of Spin+ generated by e~ej is represented in Se = {p*, e*} by matrices, which 
are complex conjugate with respect to the matrices representing the same 
generators in So = {p, or}. Thus for any s e Spin+ we have 

su = /X u and sv = -A v, where A e SL(2, C), u e So, v ~ Se 
(2.36) 

This allows us to define the anti-isomorphism " , "  of So into Se: 

�9 : u = u~ + ulo.--~ u* = flop, + ~o.,  (2.37) 

with properties 
(su)* = su* (2.38) 

and 
/~(ul, u2) =/3(u*, u*) (2.39) 

for every s e Spin+ = SL(2, C). 
We will denote the space So by Y~ and the space S~ by Z*. Now let us 

check the transformation law of the matrix x representing a vector x from 
E. Let x be given by x = u | v* + v | u*, where u = ~p +/3o. -- (~) and 
v = ~'o* + 3~* --=- (5). Because 

we obtain for (~I ~) that 
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Thus when the spinor space is transformed by A ~ SL(2, C) then E is 
transformed by the appropriate element of  A~ according to 

~ 2' = A 2 A r (2.42) 

3. P E N R O S E  W O R L D  F L A G S  

Let us take any spinor u ~Z.  The anti-isomorphism *: E--~Z* gives 
us the spinor u* ~Z*. Thus by the isomorphism X: Z | Z*--> E we obtain 

u Q u* ~ light vector o f  Minkowski  space 

The group SL(2, C) acts transitively on the space E [if we discard the point 
(~)]; hence we can limit our attention to the case u = p. Owing to the existence 
of the invariant skew bilinear form/3 on E, we can introduce a spinor e ~ Y~ 
which has the property 

/ 3 ( p ,  = 1 ( 3 . 1 )  

It  can be easily seen that e is defined by (3.1) up to ~p, with c~ ~ C, i.e., 

e = a + c~p (3.2) 

The spinor p gives us under X the null vector 

xl = p @ p* (3.3) 
and vectors 

k =  p |  + e |  = p |  + a |  + 2 R e [ c ~ ( p |  (3.4) 

defined up to axl with a ~ N. From (2.29), (2.30), (2.20), and (2.22) we find 
that 

k . k  = - 1 (3.5) 
and 

k .x l  = 0 (3.6) 

Thus it appears that the spinor p defines the null vector xl = p | p* and 
some plane P, spanned by x~ and k, and tangent to the light cone along the 
null direction defined by xl. This is the known Penrose world flag connected 
with the spinor p (Penrose, 1968) [or the so-called isotropic straight line in 
direction of  xl in negative Lobatschevsky space (Gelfand, 1962)]. Now let 
us take the positive Lobatschevsky space given in a fixed base frame 
(eo, e~, e2, e3) by the equation 

x ~  1 (3.7) 

This hyperplane intersects the light cone "along" the sphere S 2 of  radius 1. 
Let f be a light vector in the direction of x~, and such that ~: ~ SL There 
exists only one vector ko e P tangent to S ~ at ~: (k0 fulfils the condition 
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ko. r = 0 with the uniquely defined vector r = ~: - eo). (In the language 
of isotropic straight lines it means that by the realization of the hyperspace 
x ~ = 1 the isotropic straight line in the direction of ~ passes into a straight 
line tangent to $2.) We find that in our case 

ko = p |  + ~ |  (3.8) 

Let us take another spinor p' = d'p, obtained from p by the trans- 
formation 

p'= AO with A = ( I "  0 ) e-'" E SL(2, C) (3.9) 

From (2.36) we have 

p'* = Ap* so P' | P'* = P @ P* (3.10) 

According to (2.32) and (2.42) we obtain 

ko = (~ lo) ~ (;'" e_O,.)(0 1)(e;'" e 0)_(eO eo~)___ ]c~ 
(3.11) 

Hence the spinor o' defines another world flag P '  by 8, which is rotated 
with respect to P by the angle 2~o. 

Now let us take the subgroup H of SL(2, C) (the so-called spinorality 
group) of the elements of the form 

~ E ~ - ~ =  (10 ~) with ~ C  (3.12) 

Again in agreement with (2.42), we see that 

(I  0 0)  = ~ ~-~,~ x ~ r  = ~ (3.13) 

and 

(0 0) ( t  :) k o =  ~.. x x = k o + ( 2 R e ~ ) ~  (3.14) 

so the world flag defined by the spinor p is invariant under any transformation 
of the spinorality group ~ .  (This is to be expected because the spinor 
remains unmoved by any transformation belonging to Jt ~, as can be easily 
checked.) 

4. S P I N O R S  A N D  H O R O S P H E R E S  

In this section we shall try to see spinors from another point of view. 
Accordingly, let us take the Lobatschevsky space Y of timelike directions of 
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Minkowski space E. Let us realize this space as the set of  points of  the upper 
part  of  the hyperbola: 

x . x  = �89 x) = 1 (4.1) 

The distance r between two different points x, y ~ Y is given by 

cosh r = x . y  /> 1 (4.2) 

and equals zero only when the points coincide. Let us notice that in this 
metric space the distance between x and y tends to infinity, when the time 
direction defined by y ~ Y tends to a null ray. Thus the null rays appear as 
points in infinity of  our Lobatschevsky space. As from (4.2) we see that the 
distance between two points is unchanged by the Lorentz transformation, 
the Lorentz orthochronous group is the group of motions of  the space Y, 
and the space Y is the homogeneous space of s 

Now we shall introduce a horosphere co on Y as an orbit of  some point 
x ~ Y with respect to the spinorality group ~ ,  or the group conjugate to it: 

OJo = x J{' (4.3) 
o r  

oJ = x d ~ g  = x g g - l J t ~  = y g ~ g - 1  (4.4) 

with g e s (Gelfand, 1962). 
In such a way the horosphere w is given by some point x e Y and some 

element g E 2~~ o. So we see that the set of  horospheres is transitive under 
the group L,%, and from (2.34) and (2.42) we see that it is the homogeneous 
space of the group SL(2 ,  C) .  We know from Section 3 that the spinor p 
defines uniquely the null vector ~ ~ S 2 as well as the spacelike vector ko 
tangent to S 2 at se(ko ~ = - 1 ) .  Now let us choose a hyperplane containing 
the origin of  coordinates, and intersecting the light cone. It  is known that 
every such hyperplane is defined by the equation 

x . t  = 0 (4.5) 

where t is some spacelike vector, t - t  < 0. Thus choosing the hyperplane 
perpendicular to ko we see that s e e ~f'. Now it is possible to select another 

null vector s e' E S 2 which has the properties 

~:' e ~ "  that is ~:'.ko = 0 (4.6) 
and 

~:'. ~: = 2 (4.7) 

Thus every spinor p allows us to select unique timelike vector x: 

x = k o +  ~ : + ~ s  e' (4.8) 

which has properties 
x-~: = 1 (4.9) 
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and 
x .x - - -  1 (4.10) 

In the considered case of  the spinor p and basis (p, ~) of E we have 

s r = 2~r | ~* (4.11) 
and 

x--- p |  + ~ |  + 2 p |  + cr |  (4.12) 

so from (2.36) we have 

Because x belongs to the space Y, we see that the spinor o defines the horo- 
sphere 

~ ~  2 + ~ + ~ + ~ 7 ~ 1  + ~  1 + . ) } 1  ~c  (4.14) 

Now from (2.42) we obtain that the vector x' related to the spinor p' = e~p 
will be equal to 

x ' =  ( 2 e  -2"~ e] '~) (4.15) 

so x' belongs to ~o and is obtained from x by the transformation belonging 
to ~ff and defined by ~ = e 2"~ - 1. This should be expected, because the 
group ~ is invariant with respect to the elements of the form 

( ;  e~ 
that is, 

= ~ ~ (4.16) (o ~ 1)(e0~ e' ~ ('0 7) 
In such a way we have obtained that the space of horospheres of  the 

positive Lobatschevsky space Y is a homogeneous space of  the group 
SL(2, C), with the group 

( ;  e=) 
as a stabilizer group. But it is known that this group is the stabilizer group 
of the homogeneous space of light rays. But all homogeneous spaces with 
conjugate stabilizers can be identified, so every horosphere oJ is defined 
uniquely by a null vector ~ e S 2. Although the whole class of spinors, 
defined by the subgroup of elements 

(O ~ e0~)  
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of  the group SL(2,  C),  gives the same horosphere ,  we can say that  two 
different spinors  o f  this class define different coord ina te  systems on the 
two-dimens ional  Eucl idean space o f  this horosphere .  Namely,  let p define 
x by (4.8). Then every element  o f  the horosphere  

given by p, can be pa ramet r ized  by  x, i.e., by two real numbers  a and  b such 
that  ~ = a + lb. N o w  for p' = e~~ we have 

[e  ~ e~%] 
= o/  = x '  /x - l  ~ /~ = x,~{~^ = x /~ ~ ^  = X~ o e - ~ ]  

/x = (4.17) e-i~0 

I t  seems at t ract ive to admi t  tha t  the spinor  p' = e~~ defines a pa ramet r i za t ion  
o f  our  horosphere  w = ~o' by e~%, i.e., by two real numbers  a '  and  b' such 
tha t  

a ' =  a c o s q ~ - b s i n ~ o  
b'  = a sin ~ + b cos ~o (4.18) 

A l though  such a pa ramet r iza t ion  would  be very useful as it  al lows us 
to dis t inguish between two spinors  e~p and e ~<~ + ~>p in terms o f  the geomet ry  
o f  Minkowsk i  space, nevertheless it  seems desirable to define a pa ramet r i za -  
t ion of  the horosphere  ~o which agrees with the ac t ion o f  the group ~ on 
oJ. More  exactly, let us take  once again the horosphere  ~o defined by p. 
Then for  every x = (x ~ x 1, x 2, x 3) ~ ~o we have 

(4.19) 

since x ~ - x 3 = 1 for  all x ~ co. We see that  the g roup  J f  acts on elements 
x '  ~ co c y by t rans la t ion  ( - b ,  a) o f  coordina tes  (x 1, x2), i.e., 

x 1' = x 1 - b 

x 2' = x 2 + a (4.20) 

while 

a 2 + b 2 
x S ~  x a, = x a +  - -  + a x  2 - b x  x 

2 

a 2 + b 2 
xO ,,~ x o, = x o +  - -  + a x  2 - b x  ~ 

2 

(4.21) 
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On the other hand, from (4.17) we obtain 

X , ~  X p = x o (efo ~ 

with 

e_~ ,  ] (4.22) 

a 2 + b 2 
X o' : X ~ + ~ + a x  2 _ b x  1 

2 

x v = (x 1 - b )  c o s 2 9 -  (x 2 + a )  sin29 

x 2' = ( x  1 - b ) s i n  29 + (x 2 + a)cos  29 (4.23) 
a 2 + b 2 

x 3' = x 3 + - -  + a x  2 -  b x  1 
2 

Thus comparing (4.20) and (4.23), we see that the spinor e~p involves a 
change of the reference frame in (x 1, x 2) given by the rotation on 29. There- 
fore the parametrizations of  oJ, defined by the action of ~ [(4.20), (4.23)] 
will be identical for spinors ef*p and e*(*+~p. This result is in agreement 
with the fact that the vector k0 [and thus x from (4.8)] given by p coincides 
with the vector ko given by e~p. In terms of the world flags it means that 
spinors e~*p and e~(*+~p define the same world flag. 

I would like to 
encouragement. 
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